Published: July 22, 2012

Brazil 2012 Fieldwork Diary Entry 5: Ex Libro Lapidum, Historia Mundi

Ken Angielczyk, MacArthur Curator of Paleomammalogy and Section Head, Negaunee Integrative Research Center

The latin phrase that's the title of this entry means “from the book of rocks, the history of the world,” and it is a motto that a geology professor I had in graduate school adopted for himself. It's also a good description for our activities today, our first full day of fieldwork in the Parnaíba Basin.

Roger Smith and Christian Kammerer study rocks in the Pedra de Fogo Formation in the Parnaíba Basin, Brazil. Photo by Ken Angielczyk.

The latin phrase that's the title of this entry means “from the book of rocks, the history of the world,” and it is a motto that a geology professor I had in graduate school adopted for himself. It's also a good description for our activities today, our first full day of fieldwork in the Parnaíba Basin.

We arrived last night at one of the main areas we'll be focusing on this year, near the town of Pastos Bons(meaning “good pastures”). This area is where the first specimen of Prionosuchus (an archaic amphibian that lived at the time the Pedra de Fogo Formation was being deposited) was found, and it's an area that we worked in last year during our reconnaissance trip to the basin. However, Roger Smith wasn't on last year's trip and we were quite interested in his interpretation of the rock sequences in the area. Therefore, we spent most of the day looking at the structure and composition of the sedimentary rocks preserved in the area to learn about the environmental conditions under which they were likely. Also important was the order in which different rocks occur, which provides information about how the environment was changing over time.

We saw a lot of evidence today that suggests that many of the rocks were formed in conditions in which water was present, but in which the climate was likely quite dry. For example, the picture below shows very large shrinkage cracks that likely formed as mud submerged in shallow water shrank as it started to dry up. Later the cracks were filled in with slightly younger sediments, preserving them as structures in the rock that eventually formed from the sediments. We also saw rocks that were derived from sand dunes, minerals like gypsum that normally form when water evaporates leaving its dissolved salts behind, and evidence of mats of cyanobacteria that were living on the surface of the mud. Taken together, the book of rocks we were reading today suggest that the environment was likely a sabkha, a setting commonly found along ocean margins in hot, dry environments. Good examples of sabkhas can be found along the Red Sea today. In this particular area, the environment probably became more terrestrial as time passed, with rocks representing the dunes along the margin of the sea occurring above rocks formed in the shallow water just at its edge (in most situations rocks occurring higher in a sequence formed after those lower in the sequence).

Casts of large shrinkage cracks exposed in the Pedra de Fogo Formation. The cracks initially formed as mud submerged under a shallow layer of water began to shrink as it dried up. Later, the cracks were filled in with slightly younger sediments, preserving the cracks as casts in the rock that eventually formed from the sediments. Photo by Ken Angielczyk.

Although this environment might sound hostile, we did find some fossils at the end of the day, which demonstrate that animals were living in the area. A lot of the fossils are fragmentary remains of fish, but there is also a specimen that we think is part of a vertebra (backbone) that may be from a terrestrial vertebrate (also known as a tetrapod).  We're not sure if its from an archaic amphibian, a reptile, or synapsid, but it gives us hope of finding other tetrapod specimens in the area.

Photo of a fossil that the team thinks may be a vertebra (or backbone) of a terrestrial vertebrate. The scale in the picture is in centimeters. Photo by Ken Angielczyk.

Now that we have a better idea of what the rocks are telling us, our plan for tomorrow is to explore some new outcrops near where we found today's fossils. Part of what we'll do is to see how the rocks there fit in with the interpretation that Roger started developing today. Our main goal, though, will be to devote more effort towards finding fossils. Hopefully we'll have good results.


Ken Angielczyk
MacArthur Curator of Paleomammalogy and Section Head

I am a paleobiologist interested in three main topics: 1) understanding the broad implications of the paleobiology and paleoecology of extinct terrestrial vertebrates, particularly in relation to large scale problems such as the evolution of herbivory and the nature of the end-Permian mass extinction; 2) using quantitative methods to document and interpret morphological evolution in fossil and extant vertebrates; and 3) tropic network-based approaches to paleoecology. To address these problems, I integrate data from a variety of biological and geological disciplines including biostratigraphy, anatomy, phylogenetic systematics and comparative methods, functional morphology, geometric morphometrics, and paleoecology.

A list of my publications can be found here.

More information on some of my research projects and other topics can be found on the fossil non-mammalian synapsid page.

Most of my research in vertebrate paleobiology focuses on anomodont therapsids, an extinct clade of non-mammalian synapsids ("mammal-like reptiles") that was one of the most diverse and successful groups of Permian and Triassic herbivores. Much of my dissertation research concentrated on reconstructing a detailed morphology-based phylogeny for Permian members of the clade, as well as using this as a framework for studying anomodont biogeography, the evolution of the group's distinctive feeding system, and anomodont-based biostratigraphic schemes. My more recent research on the group includes: species-level taxonomy of taxa such as Dicynodon, Dicynodontoides, Diictodon, Oudenodon, and Tropidostoma; development of a higher-level taxonomy for anomodonts; testing whether anomodonts show morphological changes consistent with the hypothesis that end-Permian terrestrial vertebrate extinctions were caused by a rapid decline in atmospheric oxygen levels; descriptions of new or poorly-known anomodonts from Antarctica, Tanzania, and South Africa; and examination of the implications of high growth rates in anomodonts. Fieldwork is an important part of my paleontological research, and recent field areas include the Parnaíba Basin of Brazil, the Karoo Basin of South Africa, the Ruhuhu Basin of Tanzania, and the Luangwa Basin of Zambia. My collaborators and I have made important discoveries in the course of these field projects, including the first remains of dinocephalian synapsids from Tanzania and a dinosaur relative that implies that the two main lineages of archosaurs (one including crocodiles and their relatives and the other including birds and dinosaurs) were diversifying in the early Middle Triassic, only a few million years after the end-Permian extinction. Finally, the experience I have gained while studying Permian and Triassic terrestrial vertebrates forms the foundation for work I am now involved in using models of food webs to investigate how different kinds of biotic and abiotic perturbations could have caused extinctions in ancient communities.

Geometric morphometrics is the basis of most of my quantitative research on evolutionary morphology, and I have been using this technique to address several biological and paleontological questions. For example, I conducted a simulation-based study of how tectonic deformation influences our ability to extract biologically-relevant shape information from fossil specimens, and the effectiveness of different retrodeformation techniques. I also used the method to address taxonomic questions in biostratigraphically-important anomodont taxa, and I served as a co-advisor for a Ph.D. student at the University of Bristol who used geometric morphometrics and finite element analysis to examine the functional significance of skull shape variation in fossil and extant crocodiles. Focusing on more biological questions, I am currently working on a large geometric morphometric study of plastron shape in extant emydine turtles. To date, I have compiled a data set of over 1600 specimens belonging to nine species, and I am using these data to address causes of variation at both the intra- and interspecific level. Some of the main goals of the work are to examine whether plastron morphology reflects a phylogeographic signal identified using molecular data in Emys marmorata, whether the "miniaturized" turtles Glyptemys muhlenbergiiand Clemmys guttata have ontogenies that differ from those of their larger relatives, and how habitat preference, phylogeny, and shell kinesis affect shell morphology.

A collaborative project that began during my time as a postdoctoral researcher at the California Academy of Sciences involves using using models of trophic networks to examine how disturbances can spread through communities and cause extinctions. Our model is based on ecological principles, and some of the main data that we are using are a series of Permian and Triassic communities from the Karoo Basin of South Africa. Our research has already shown that the latest Permian Karoo community was susceptible to collapse brought on by primary producer disruption, and that the earliest Triassic Karoo community was very unstable. Presently we are investigating the mechanics that underlie this instability, and we're planning to investigate how the perturbation resistance of communities as changed over time. We've also experimented with ways to use the model to estimate the magnitude and type of disruptions needed to cause observed extinction levels during the end-Permian extinction event in the Karoo. Then there's the research project I've been working on almost my whole life.

Morphology and the stratigraphic occurrences of fossil organisms provide distinct, but complementary information about evolutionary history. Therefore, it is important to consider both sources of information when reconstructing the phylogenetic relationships of organisms with a fossil record, and I am interested how these data sources can be used together in this process. In my empirical work on anomodont phylogeny, I have consistently examined the fit of my morphology-based phylogenetic hypotheses to the fossil record because simulation studies suggest that phylogenies which fit the record well are more likely to be correct. More theoretically, I developed a character-based approach to measuring the fit of phylogenies to the fossil record. I also have shown that measurements of the fit of phylogenetic hypotheses to the fossil record can provide insight into when the direct inclusion of stratigraphic data in the tree reconstruction process results in more accurate hypotheses. Most recently, I co-advised two masters students at the University of Bristol who are examined how our ability to accurately reconstruct a clade's phylogeny changes over the course of the clade's history.