Published: July 23, 2012

Brazil 2012 Fieldwork Diary Entry 9: Watch Where You Walk

Ken Angielczyk, MacArthur Curator of Paleomammalogy and Section Head, Negaunee Integrative Research Center

Documentary filmmaking and paleontology are a lot alike. Its all about being in the right place, at the right time, with the right kind of eye. We are eight days into this expedition and I’m learning a lot. Not just about paleontology, geology, and biology but also about the people who do this work and what it takes to be successful at it. As a documentarian, it's always hard to know what you’re getting yourself into until you’re in the thick of it.

Screen grab from a video clip showing team members seeking shelter during a sudden downpour. (from left to right, Dr. Juan-Carlos Cisneros, Dr. Roger Smith, Dr. Martha Richter, and Dr. Jörg Fröbisch). Image by Jeff Johnson.

Today we have a guest entry by Jeff Johnson, the videographer who is accompanying us in the field.

brazil fieldwork 2012 from Jeff Johnson on Vimeo.

Documentary filmmaking and paleontology are a lot alike. Its all about being in the right place, at the right time, with the right kind of eye. We are eight days into this expedition and I’m learning a lot. Not just about paleontology, geology, and biology but also about the people who do this work and what it takes to be successful at it. As a documentarian, it's always hard to know what you’re getting yourself into until you’re in the thick of it. Will your subjects be willing participants? Will the visuals translate into a compelling story? And in this particular instance, what kind of creatures will I shake out of my boots in the morning? But my biggest concern at the start of this project was how to dissect the scientist’s process so that an audience with little or no concept of scientific method could learn and appreciate the work. Every day here the team makes discoveries. Some important, others not as much and I have already accumulated hours and hours of footage (a preemptive apology to my editor). Much of it consists of team members walking or staring intently at the ground (it must have been a paleontologist who coined the phrase “looking for a needle in a haystack”). However, in between the somewhat mundane reality of this sort of fieldwork are some of the most beautiful moments I think I have ever captured. And I’m not talking about the fossils or even some of the breathtaking landscapes that northeastern Brazil has to offer. No, the most valuable footage I have collected thus far are of the team members themselves. Enraptured and passionate, they are beaming with enthusiasm for what they do, not necessarily about their own specific field of work but more so with all the possibilities that come with new discovery. Their curiosity for our world knows no bounds and it’s something I profoundly admire. When this trip is over and the final edit is complete, the story will surely be one of a paleontological expedition, but also one that will hopefully inspire us all to reflect on how we perceive this world.

Dr. Claudia Marsicano walks down the road between Pastos Bons and Nova Iorque, on the way to a new fossil locality. Photo by Jeff Johnson.


Ken Angielczyk
MacArthur Curator of Paleomammalogy and Section Head

I am a paleobiologist interested in three main topics: 1) understanding the broad implications of the paleobiology and paleoecology of extinct terrestrial vertebrates, particularly in relation to large scale problems such as the evolution of herbivory and the nature of the end-Permian mass extinction; 2) using quantitative methods to document and interpret morphological evolution in fossil and extant vertebrates; and 3) tropic network-based approaches to paleoecology. To address these problems, I integrate data from a variety of biological and geological disciplines including biostratigraphy, anatomy, phylogenetic systematics and comparative methods, functional morphology, geometric morphometrics, and paleoecology.

A list of my publications can be found here.

More information on some of my research projects and other topics can be found on the fossil non-mammalian synapsid page.

Most of my research in vertebrate paleobiology focuses on anomodont therapsids, an extinct clade of non-mammalian synapsids ("mammal-like reptiles") that was one of the most diverse and successful groups of Permian and Triassic herbivores. Much of my dissertation research concentrated on reconstructing a detailed morphology-based phylogeny for Permian members of the clade, as well as using this as a framework for studying anomodont biogeography, the evolution of the group's distinctive feeding system, and anomodont-based biostratigraphic schemes. My more recent research on the group includes: species-level taxonomy of taxa such as Dicynodon, Dicynodontoides, Diictodon, Oudenodon, and Tropidostoma; development of a higher-level taxonomy for anomodonts; testing whether anomodonts show morphological changes consistent with the hypothesis that end-Permian terrestrial vertebrate extinctions were caused by a rapid decline in atmospheric oxygen levels; descriptions of new or poorly-known anomodonts from Antarctica, Tanzania, and South Africa; and examination of the implications of high growth rates in anomodonts. Fieldwork is an important part of my paleontological research, and recent field areas include the Parnaíba Basin of Brazil, the Karoo Basin of South Africa, the Ruhuhu Basin of Tanzania, and the Luangwa Basin of Zambia. My collaborators and I have made important discoveries in the course of these field projects, including the first remains of dinocephalian synapsids from Tanzania and a dinosaur relative that implies that the two main lineages of archosaurs (one including crocodiles and their relatives and the other including birds and dinosaurs) were diversifying in the early Middle Triassic, only a few million years after the end-Permian extinction. Finally, the experience I have gained while studying Permian and Triassic terrestrial vertebrates forms the foundation for work I am now involved in using models of food webs to investigate how different kinds of biotic and abiotic perturbations could have caused extinctions in ancient communities.

Geometric morphometrics is the basis of most of my quantitative research on evolutionary morphology, and I have been using this technique to address several biological and paleontological questions. For example, I conducted a simulation-based study of how tectonic deformation influences our ability to extract biologically-relevant shape information from fossil specimens, and the effectiveness of different retrodeformation techniques. I also used the method to address taxonomic questions in biostratigraphically-important anomodont taxa, and I served as a co-advisor for a Ph.D. student at the University of Bristol who used geometric morphometrics and finite element analysis to examine the functional significance of skull shape variation in fossil and extant crocodiles. Focusing on more biological questions, I am currently working on a large geometric morphometric study of plastron shape in extant emydine turtles. To date, I have compiled a data set of over 1600 specimens belonging to nine species, and I am using these data to address causes of variation at both the intra- and interspecific level. Some of the main goals of the work are to examine whether plastron morphology reflects a phylogeographic signal identified using molecular data in Emys marmorata, whether the "miniaturized" turtles Glyptemys muhlenbergiiand Clemmys guttata have ontogenies that differ from those of their larger relatives, and how habitat preference, phylogeny, and shell kinesis affect shell morphology.

A collaborative project that began during my time as a postdoctoral researcher at the California Academy of Sciences involves using using models of trophic networks to examine how disturbances can spread through communities and cause extinctions. Our model is based on ecological principles, and some of the main data that we are using are a series of Permian and Triassic communities from the Karoo Basin of South Africa. Our research has already shown that the latest Permian Karoo community was susceptible to collapse brought on by primary producer disruption, and that the earliest Triassic Karoo community was very unstable. Presently we are investigating the mechanics that underlie this instability, and we're planning to investigate how the perturbation resistance of communities as changed over time. We've also experimented with ways to use the model to estimate the magnitude and type of disruptions needed to cause observed extinction levels during the end-Permian extinction event in the Karoo. Then there's the research project I've been working on almost my whole life.

Morphology and the stratigraphic occurrences of fossil organisms provide distinct, but complementary information about evolutionary history. Therefore, it is important to consider both sources of information when reconstructing the phylogenetic relationships of organisms with a fossil record, and I am interested how these data sources can be used together in this process. In my empirical work on anomodont phylogeny, I have consistently examined the fit of my morphology-based phylogenetic hypotheses to the fossil record because simulation studies suggest that phylogenies which fit the record well are more likely to be correct. More theoretically, I developed a character-based approach to measuring the fit of phylogenies to the fossil record. I also have shown that measurements of the fit of phylogenetic hypotheses to the fossil record can provide insight into when the direct inclusion of stratigraphic data in the tree reconstruction process results in more accurate hypotheses. Most recently, I co-advised two masters students at the University of Bristol who are examined how our ability to accurately reconstruct a clade's phylogeny changes over the course of the clade's history.